Wireless Roadside Inspection
Proof-of-Concept Test

Background

Safety inspections are performed on commercial vehicles to promote safety on the roadways; over half of all these inspections detect safety violations. The use of a wireless inspection method could dramatically increase the number of safety inspections to at least the number of weight inspections by checking driver licensing, medical card, carrier, and weight information without requiring the driver to stop. Routine inspections could then supplement wireless inspections by further investigating trucks with questionable wireless inspection data and trucks randomly selected for hands-on inspection. The implementation of such a system must be preceded by a proof-of-concept test to determine the feasibility, effectiveness, and limitations of the wireless inspection method.

Phase 1A – Generating SDMS

PeopleNet, a producer of current electronic on-board recorder (EOBR) technology, designed a system to produce a Safety Data Message Set (SDMS). Data obtained during a 10-hour test was compared to similar data obtained through an ORNL monitoring system comprised of an eDAQ-lite, VBOX III, Air-Weigh, and custom software.

The majority of the data obtained from the PeopleNet SDMS was accurate. However, the tested system was unable to include the weight and ABS flag components of the SDMS. Also, over an hour was required in some cases for driver status changes to be reflected in the SDMS.

Phase 1B – Testing Wireless Transceivers

The ability to send and receive an SDMS at varying truck orientations (in 45-degree increments), distances (100 ft to 400 ft), and frequencies (5.9 GHz and 2.4 GHz) was tested.

The dome-type antenna had better reception at 2.4 GHz, while the stick antenna performed better at 5.9 GHz. The use of a tripod for the antenna mount increased the effectiveness of both antennas. Files were successfully transferred at various speeds (up to 55 mph).

Conclusions

This proof-of-concept test demonstrated the feasibility of a wireless inspection method. It also identified areas in which further testing would be beneficial. Further research should include more extensive testing to determine ideal antenna height, the most appropriate frequency, and optimum mounting location on MEVs.

Future Research

PHASE 2 – PILOT TEST
Testing will continue with further development of the technology and the integration of the system with an actual (rather than simulated) "back-office" infrastructure to assist enforcement.

PHASE 3 – FIELD OPERATIONAL TEST
Further testing will include the integration of transceivers into about 100 trucks using current EOBR technology.

Department of Energy
Science Undergraduate Laboratory Internships Program

Summer 2007

Mary Beth Lascurain
Pensacola Christian College

Gary Capps
Engineering Science and Technology Division
Oak Ridge National Laboratory

Other Acknowledgements
Oak Ridge Institute for Science and Technology
Bill Knee, ORNL
Oscar Franzese, ORNL
Randall Plate, Cedarville University