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Abstract 

This chapter describes the principal types of both passenger and freight demand models in use 

today, providing a brief history of model development supported by references to a number of 

popular texts on the subject, and directing the reader to papers covering some of the more recent 

technical developments in the area. Over the past half century a variety of methods have been 

used to estimate and forecast travel demands, drawing concepts from economic/utility 

maximization theory, transportation system optimization and spatial interaction theory, using  

and often combining solution techniques as varied as Box-Jenkins methods,  non-linear 

multivariate regression, non-linear mathematical programming, and agent-based 

microsimulation.   
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1. Introduction 

Methods for estimating and forecasting travel demands draw on a number of different 

disciplines, making use of optimization methods embedded in econometric as well as 

mathematical programming frameworks, and using microsimulation and agent-based modeling 
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to generate travel activity patterns from the ground up for entire regional populations of travelers 

and freight movers. These methods are now well represented in software programs that in 

today‟s computers generate demand estimates in anything from a few seconds to a few hours, 

depending on the size of the task at hand. In this chapter we describe the most common travel 

demand modeling approaches, the nature of the solution methods used, and the types of data 

used to fit or “calibrate” them to real-world conditions. A feature of the travel demand literature 

over the past half century has been the variety of methods that have been applied, with method 

selection often determined by the nature and quality of available data sources as well as by 

specific solution needs. Current models can be categorized in a number of ways.  One obvious 

distinction is between passenger demand and freight demand models, although both use similar 

solution methods. From a practitioners‟ standpoint the following classification also proves 

useful: 

 location-specific, time-series based demand models 

 cross-sectional modeling of origin-to-destination travel, usually broken down by travel 

mode and/or travel route, as well as by trip purpose or class of commodity shipped.  

 

A few examples of combined time-series/cross-sectional travel demand models have also been 

developed, but to date have seen limited use due principally to limited data with which to 

calibrate them.  

 

A second important distinction is between what has been called the “trip based approach”, which 

has been the dominant approach in practice since the 1950‟s, and the more recent and 

increasingly popular “activity based approach” to travel demand modeling.  The differences 

between these two approaches are brought out below.  

2. Time Series Based Demand Models 

Time series data is often used to develop forecasts of the demand for specific transportation 

facilities such as airports (Hensher, 2002; Andreoni and Postorino 2006; Karlaftis, 2008) and 

seaports (Veenstra and Haralambides, 2001; Seabrooke et al, 2003), as well as for high volume 

links within a transportation network (Nihan and Holmesland, 1980; Ghosh et al, 2007). The 

empirical data used in these models may span a few weeks, a few months, or a few years of prior 

passenger, freight, or vehicular traffic volume data, and the forecast may be short term, covering 

the next few weeks or months, or long term, extending projections a number of years into the 

future. The historical dataset may include data for a single facility or location or may combine 

data from a number of different locations, such as vessel arrival or departure data collected for 

all of the ports in a given region or country. In some cases a simple univariate time series model 

is used, based solely on projecting a past trend in traffic growth or decline forward in time: or a 

multivariate, causal model may be applied that relates the temporal trend in facility or regional 

demand to temporal trends in a number of explanatory variables: such as trends in travel prices, 

disposable incomes, industrial output, and growth in the size of selected traveling populations. In 
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some instances (e.g. Klodinksi and Al-Deek, 2004) time series data from one modal activity (e.g. 

number of offloaded seaport containers) has been used to forecasts travel demand for another 

mode (e.g. the number of trucks serving a seaport). 

Past studies offer a variety of methods to choose from, including simple growth factor methods, 

multiple regressions, exponential smoothing, Kalman filters, multinomial tobits and probits, 

artificial neural network models, and a variety of autoregressive integrated moving average 

(ARIMA) models, in the tradition of Box and Jenkins (1970), including variable (VARIMA) and 

seasonal (SARIMA) models. Commercial software is available for to estimate model parameters, 

with most solutions based on well established techniques for either minimizing a residual sum of 

squares function or maximizing a likelihood function associated with the observed time series. 

Similar techniques have been used in both passenger and freight demand forecasting.    

3. Cross-Sectional, Trip Based Demand Modeling 

Once the issue becomes one of forecasting the demand for multiple origin-to-destination (O-D) 

travel movements, and the geographic context moves away from a single facility or travel 

corridor, then data limitations play a major role in model selection, as they have done in model 

development over the past fifty years. In particular, when we enter the realm of regional 

transportation planning we are dealing with the estimation and forecasting of hundreds, even 

thousands, of spatially explicit O-D movements within, as well as into, out of, and through a 

planning region (see the popular textbooks by Meyer and Miller, 2001, and Ortuzar and 

Willumsen, 2001).  

The high costs of collecting this sort of O-D data on personal or business travel activities means 

that most demand models are based on the responses provided by a sample of households or 

companies to a travel questionnaire, from which are developed an hopefully representative set of 

daily trip rates (trip frequencies) and trip lengths, broken down by trip purpose or commodity 

class, as well as data on the modes and sometimes also the routes selected. While this approach 

can work quite well for the purpose of understanding current activity rates and even the 

geographic range of individual travel activity patterns, it is necessarily only a surrogate for a 

proper behavioral analysis of how such travel decisions as mode and destination choices evolve 

over time, and as households and businesses themselves evolve. A preferred method for 

capturing such behavioral connections is to carry out panel surveys, in which the same 

establishment (i.e. a household or a business) is re-surveyed one or more times after a suitable 

time interval: the challenge being to avoid attrition in the sample, especially as the time interval 

increases (see Golob, et al 1997). Such sampling typically occurs in two or more “waves” and as 

such introduces an element of time series modeling into the estimation process. To date, 

however, only a limited number of such panel datasets have been collected and applied. Most 

planning models make use of travel surveys that draw a different sample of respondents from 
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one survey to the next, often at an interval of five or more years. As a result, most applications of 

regional travel demand models have placed a good deal of reliance on the variability caused by a 

combination of differences in a respondent‟s household or company structure along with 

differences in responses created by the different geographic locations and site specific conditions 

they find themselves  dealing with. 

 3.1 Disaggregate, Behavioral Models 

Discrete choice (or “logit”) models based on utility maximization theory are commonly used to 

represent how individuals or companies make travel and shipment decisions.  Discrete choice 

models are used to predict the probability a decision-maker will choose one alternative among a 

finite set of mutually exclusive and collectively exhaustive alternatives. A decision-maker can 

represent an individual, a group of individuals, a government, a corporation, etc. Discrete choice 

models relate to demand models in the sense that the total demand for a specific good (or 

alternative) is represented as the collection of choices made by decision-makers. 

Utility is a scalar index of value that is a function of attributes and/or individual characteristics. 

Utility represents the “value” an individual places on different attributes and captures how 

individuals make trade-offs among different attributes. Individuals are assumed to select the 

alternative that has the maximum utility. Alternative i is chosen if the utility individual n obtains 

from alternative i, niU , is greater than the utility for all other alternatives. The utility for 

alternative i and individual n, niU , has an observed component, niV , and an unobserved 

component, commonly referred to as an “error term,” ni . Formally, ni ni niU V   , where 

ni niV x             

 

Specific choice probabilities for different discrete choice models are obtained by imposing 

different assumptions on the distribution of these error terms and/or by assuming that   varies 

across decision-makers. The assumption that unobserved error components are independently 

and identically distributed (iid) and follow a Gumbel distribution with mode zero and scale one, 

 ~ iid 0,1G , results in the binary logit (in the case of two alternatives) or the multinomial 

logit model (in the case of more than two alternatives) (McFadden, 1974).  Under these 

assumptions, MNL choice probabilities are given as: 

 
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       (1)          

where nC  is the set of alternatives (or choice set) faced by individual n. The assumption that the 

error terms are iid G(0,1) is advantageous in the sense that the choice probability takes on a 

closed-form expression that is computationally simple. However, the same assumption imposes 

several restrictions on the binary logit and multinomial logit (MNL) models. The first key 
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restriction is the independence of irrelevant alternatives (IIA), a property which states that the 

ratio of choice probabilities Pni / Pnj for i, j  Cn is independent of the attributes of any other 

alternative. In terms of substitution patterns, this means a change or improvement in the utility of 

one alternative will draw share proportionately from all other alternatives. In many applications, 

this may not be a realistic assumption. For example, in mode choice model applications, one 

would expect that bus would compete more with other public transit modes than auto.  

Consequently, much of the research in the travel demand modeling community over the past 30-

40 years has been focused on incorporating more flexible substitution patterns.  The most 

commonly used model in practice that helps relax the IIA property while maintaining a closed-

form expression for choice probabilities is the NL model (McFadden, 1978; Williams 1977). 

Dozens of other models have been developed for travel demand modeling applications, including 

those belonging to the generalized nested logit (GNL) class (Wen and Koppelman 2001) and/or 

the Network Generalized Extreme Value (NetGEV) class (Daly and Bierlaire 2006).  Garrow 

(2010) provides an extensive review of these models in her text and focuses on applications of 

these models to the airline industry.  Ben-Akiva and Lerman (1985), Train (2003), and 

Koppelman and Bhat (2006) are other key introductory texts on applying discrete choice models 

for travel demand applications. 

 

 

The second key limitation of MNL models is that the   parameters represent “average” 

population values.  The multinomial probit (MNP) model (Daganzo 1977) was one of the first 

discrete choice models that was used to incorporate more flexible substitution patterns and/or 

random taste variation.  However, due to computational limitations, the ability to use the probit 

model was limited.  It was not until the past decade that an alternative to the probit model, 

namely the mixed logit model, was introduced.   

 

Conceptually, the mixed logit model is identical to the MNL model except that the parameters of 

the utility functions for mixed models can vary across individuals, alternatives, and/or 

observations. However, like the probit model, this added flexibility comes at a cost – choice 

probabilities can no longer be expressed in closed-form. Due to improvements in computational 

power, however, it is now feasible to use mixed logit models for travel demand modeling 

applications.  Indeed, the number of publications using mixed logit models has expanded 

exponentially since 2003 and mixed logit models have been applied in numerous other 

transportation contexts spanning activity-based planning and rescheduling behavior models 

(Akar et al, 2009; van Bladel et al, 2009; Bellemans et al, 2009), mode choice models (Duarte et 

al, 2009; Meloni, Bez, et al, 2009), residential location/relocation decisions (Eluru et al, 2009), 

and consideration of physical activity in choice of mode (Meloni, Portoghese, et al, 2009).    

 

Similar models have recently become popular with freight modelers. Some authors have also 

combined traditionally separate choice dimensions (see Section 3.2 below). For example, Train 



6 

 

and Wilson (2006) used a MNL logit to analyze the choice of mode by agricultural product 

shippers, making use of both revealed and respondent state preference data to calibrate their 

model. Jiang et al (1999) use a NL model to estimate the demand for alternative freight modes in 

which all for-hire modes are compared within the same nest, and their averaged, inclusive value 

utility then compared with the private carriage (in Europe own-account) modal service option. 

An Heteroscedastic Extreme Value (HEV) choice model has also been used in freight mode 

choice applications (Holguin-Veras, 2002; Norojono and Young, 2003). See Jeffs and Hills 

(1990) for a discussion of the explanatory variables often found to be significant in freight tmode 

choice. 

 

3.2 Aggregate, Four-Step Planning Models 

In the United States each metropolitan area as well as each state develops databases and models 

to estimate current, or baseline, traffic volumes using its major transportation facilities, and links 

these estimates to regional economic activity and demographic forecasts in order to predict 

future traffic flows. These forecasts are used in turn to inform the investment of large sums of 

public money in expanding or improving transportation services within the region. For the past 

fifty years or so this process has been supported, notably in large urban or metropolitan regions, 

by the four-step transportation planning model shown in Figure 1. Most commonly applied to 

passenger, or personal travel forecasting, this approach begins by modeling the frequency with 

which households engage in travel, estimating the number of trips generated daily for a number 

of different trip purposes: with separate model calibrations for example, for commuting to work, 

shopping, traveling to school, and making personal business, social and recreational trips; with a 

distinction also common between home-based and non-home-based trips. The four sequential, 

modeling steps can be represented in very general terms as: 

Trip (or Freight) Generation:   Oip  = F(Xip)    and Attraction:      Djp = F(Xjp)          (2a) 

Trip (or Freight) Distribution (Flow):   Tijp  = F(Oip, Djp, cijp)    (2b) 

Modal Split:   Tijpk  = F(Tijp, gijpk, cijpk)       (2c) 

Route Assignment: Σp Tijpkr  =  Tij*kr  = F(Tij*k, gij*kr,cij*kr)    (2d) 

where F(  ) means “a function of”, and where i = a trip origin (i =1 2,…I), j = a trip destination (j 

= 1,2,…J), Oi = the number of trip origins out of i, Dj = the number of  trip destinations into j, T 

= a daily (or annual) measure of  travel demand, and  where Tijpkr, for example, refers to the  

number of trips taken daily (or annually) from i to j for purpose p by mode k and route r;  c = 

transportation costs, and  cijkr  for example, refers to the cost of transporting a passenger or unit 
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of freight from i to j by mode k on route r.  Finally, Xi ,Xj  and  g  refer to matrices of explanatory 

variables associated with specific steps in the flow estimation process. 

 

The principal reason for the sequential nature of this approach was the failure of early modeling 

efforts to capture each of these four policy relevant aspects of travel demand within a single 

model calibration step; with the variables best explaining mode choice, for example, differing 

from those yielding good estimates of the other three choices. For the purpose of producing 

planning and policy relevant outputs, each step in the process is executed at an aggregate, or 

traffic analysis zone (TAZ) level, with the largest metropolitan regions broken down into 

hundreds of TAZs for the purpose of estimating origin-to-destination (O-D) flows between all 

TAZ pairs. In practice, such TAZs are often equated with Census blocks, block-groups or tracts, 

in order to make use of federally supplied estimates of the number of households and businesses 

within each TAZ. At the statewide level in the United States, and at the national level in many 

smaller countries such TAZs may be equated with counties. Within metropolitan areas the focus 

here is on automobile and truck flows, as well as public transit bus and rail movements. At the 

statewide level other, non-highway modes enter the picture, notably air, rail and water transport.  

 

Variants on the same four step modeling process have also been used to forecast daily and annual 

freight flow volumes, with the focus on truck freight movements over urban and intercity 

highways, and using a three step process where modal split is not required, but adding an 

additional sub-model where flows are estimated initially not in number of trips but in number of 

tons of different commodities shipped, which then need to translated into the number of vehicle 

(i.e. truck) trips using suitable tons/truck loading factors. A popular functional form for all four 

modeling steps, for both passenger and freight demand modeling, is the logit model, with linear 

and log-linear regressions also popular for the trip generation stage.  However, most regional 

transportation planning models then merge the truck freight and passenger automobile flows to 

produce passenger car equivalent (pce) O-D flow matrices, in which the larger trucks are 

allocated pce values much greater than 1.0 before assigning them to the same highway network. 

Where this loading leads to high levels of traffic volume to capacity (v/c) ratios the use of 

congestion sensitive route choice algorithms have become the norm, notably traffic route 

assignments based on Wardrop‟s (1952) user optimal equilibrium principle, in which travelers 

select their routes is such a way that their aggregate flow patterns lead to identical travel times 

between all routes used to travel between any given O-D pair of places.  

        

[Insert Figure 1 about here] 

Finally, a look at Figure 1 also reveals an important feedback loop between the trip destination, 

mode and route choice sub-models. By iterating in this manner, and maintaining convexity in the 

sub-model solutions, it is possible to bring the flows and costs at each modeling set to a stable 
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solution: such that no further significant changes occur in either O-D costs or O-D trip volumes, 

i.e. bringing destination, mode and route choices to a cost-flow balance.  However, extension of 

this procedure to trip generation is rarely attempted using traditional model formulations, largely 

because daily trip frequencies are relatively insensitive to trip cost differences at the level of 

spatial aggregation to which these planning models are typically applied. Indeed, the entire four 

step sequential modeling process has received growing criticism from a number of quarters over 

the past four decades, not only for its limited behavioral basis, but also for its lack of a cohesive 

conceptual framework. One response has been the rapid evolution of the disaggregate demand 

models reviewed above. A second response has been to develop more closely integrated, 

“combined” choice models that work through economically based equilibrium formulations of 

the entire flow modeling process (Boyce, 1998). The text by Oppenheim (1995) describes and 

links both approaches together. These combined models use technical advances in non-linear 

mathematical programming solution techniques, model formulations based on variational 

inequalities, and computationally efficient solution methods tied to link-node, path-based 

network formulations of not only the physical traffic flows themselves but also of the entire 

process of identifying and tracking travel choices through numerous decision-making steps. 

3.3 Mathematical Programming Formulations 

The logit discrete choice model can also be derived as an optimization problem, which in its 

aggregate, planning level application has well-known convex programming solution. Texts by 

Wilson (1970), Erlander and Stewart (1990) and Lee (2004), among others, explore these 

formulations. For example, for a set of annual (or daily) trip volumes, Tij, between origin 

locations i = 1,2,…I  and destination locations j = 1,2,…J, Wilson (1970) shows that the 

following entropy maximizing trip distribution (destination) model 

Max  L(T)  =  - ΣiΣj  (Tij/T) ln (Tij/T)      (3) 

subject to:   Σj Tij = Oi       for all i   and   Σi Tij = Dj       for all j  (4)    

cbar = (1/T) * ΣiΣj Tij* cij     and  all Tij  ≥ 0     (5)  

was solved by the following doubly constrained  spatial interaction model: 

Tij =  Ai * Bj  * Oi * Dj *  exp(-β*cij)      (6) 

where Oi  = the volume of travel (e.g. number of trips) generated by TAZ i, Dj  = the volume of 

travel attracted to TAZ j, and where  the Ai  and Bj  are two sets of matrix “balancing factors” 

given as: 

Ai =1 / [∑j Bj * Dj * exp(-β*cij)]              for all  i    (7) 

 and 
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 Bj = 1 / [∑i Ai * Oi * exp(-βcij)]            for all j    (8) 

which, via iterative application, satisfy these two  “trip end” constraint sets (7) and (8). Here β 

represents the sensitivity of travelers (or in the case of freight movements, shippers) to additional 

travel cost.  Applying a suitable non-linear search method, a value of β is sought that satisfies the 

system‟s average cost constraint () above, while also meeting the two sets of trip end constraints. 

A little thought here also shows that, by setting all Bj‟s (Ai‟s) to a value of 1.0,  yields a trip 

origination (trip attraction) constrained model in aggregate logit form.  

Subsequently, Erlander (1977) showed how this model can also be re-stated as an equivalent 

cost-minimization model of the form: 

 Minimize C(T) 

subject to:  Σj Tij = Oi       for all i  and   Σi Tij = Dj   for all j      

L(T) = - ΣiΣj  (Tij/T) ln (Tij/T) ≥ L0,   and all Tij   ≥ 0      

where L0 = a minimum acceptable level of trip dispersion. 

Numerous extensions of this sort of approach have been used since the 1970s to formulate and 

solve increasingly more elaborate travel demand (O-D flow inclusive) models, including the 

“joint” solution of optimal O-D flow and traffic route assignment models (see Erlander 1977) as 

well as jointly optimized O-D, mode and route choice solutions, in freight (see Ham et al, 2005, 

for example) as well as passenger travel.  These approaches also set the table for the solution of 

much broader optimization problems that include optimal land use as well as optimal travel 

pricing mechanisms within their spatially explicit price-versus-volume based equilibrium 

solutions (see Wilson et al, 1981; Lee, 2004 for examples). 

Similar programming models have also been applied to freight demand estimation and 

forecasting, but with the Tij„s increasingly solved for in terms of tons shipped, rather than 

number of vehicle trips, notably by combining Leontief‟s input-output approach to capturing 

inter-industry interactions with the spatial interaction models of the type represented by 

equations (6)-(8) above to create inter-regional or multi-regional input-output models of 

commodity flows. When combined with logit or other discrete choice model of mode selection 

(e.g. of truck vs. rail vs. waterway vs. intermodal truck-rail or truck-water transport) these 

modeling frameworks are now beginning to be applied in statewide freight demand forecasting 

in the United States as well as in nationwide freight demand forecasting in Europe and elsewhere 

(see the review of freight demand models by Southworth, 2009).  
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 4. Activity Based Approaches, Microsimulation and Agent-Based Modeling Tools 

All of the modeling approaches described in Section 3 above have been applied to forecasting 

the number of passenger or freight trips associated with a region‟s population distribution and its 

travel generating land use patterns. In doing so these trips are effectively abstracted from the 

often complex set of family influenced decisions being made by individual travelers and the 

company logistics-based decisions being made by shippers of goods. In effect, the approach has 

proved to be a very cost effective way of simplifying the travel demand process: by treating non-

travel decisions as largely exogenous to the production of trips. Also beginning in the 1950‟s 

(see McNally and Rindt, 2008) but only gaining any noticeable level attention by the 1970‟s, was 

a more behaviorally attractive but at the same time more conceptually as well as computationally 

demanding activity-based approach (ABA) to travel demand modeling. In this approach travel 

activities are more closely linked to the complex scheduling decisions associated with a good 

deal of household travel, or as McNally and Rindt (2008, Section 3.1) put it: “The ABA takes as 

the basic unit of analysis the travel-activity pattern, defined as the revealed pattern of behavior 

represented by travel and activities (both in-home and non-home) over a specific time period 

(often a single day).”  Hence an individual‟s single day travel activity schedule might look 

something like that shown in Figure 2, in this instance for a two adult, one child family. 

 

A little thought about the many variables that might affect such a daily activity pattern indicates 

that this sort of modeling can become quite complex. It can also become computationally very 

time consuming if thousands, or even millions of such patterns need to be simulated in support of  

project assessments and other planning applications. Fortunately, the tremendous advances in 

computational speeds over the past five decades have now provided a practical means of 

addressing this problem. As a result an increasingly popular means of repeatedly generating large 

numbers (thousands, millions) of such individual travel activity patterns is to use 

microsimulation.  Both Monte Carlo-based and cellular automata-based methods are being used 

to associate specific attributes (of the traveler, the vehicle, the cargo, the geography) with each 

trip simulated, using repeated sampling from pre-defined statistical distributions to create a 

synthetic population of travelers and/or their trips. This is done by first of all building individual 

traveler profiles, sometimes termed synthetic travelers, by drawing sample traveler 

characteristics from statistical distributions of, for example, different age, income, and 

employment groups. These travelers are then assigned a specific travel activity pattern, typically 

a daily pattern. When the simulator is asked to select the traveler‟s trip frequency, mode, route, 

or destination this means drawing from a set of probabilities that have themselves already been 

modeled using either logit or similar demand models of the type discussed above, or using a rule-

based activity scheduling algorithm (see, for example, Pendyala et al, 1998). Once generated, 

these individual traveler activity patterns can then be aggregated to produce an estimate (and 

subsequently a forecast) of the number of trips taking place between any pair of locations, by 

vehicle type (and by vehicle occupancy if the method used is sophisticated enough to match up 
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trips involving more than one family member). Besides this natural aggregation property, 

microsimulation is also an especially efficient method for representing sequential events, 

allowing a natural incorporation of system dynamics. This includes the generation of multi-trip, 

multi-purpose daily tours or “trip chains” of the sort shown in Figure 2.   

 

 [Insert Figure 2 about here] 

 

Miller (2003) provides a review and a brief history of the best known microsimulation models in 

both North America and Europe. See also Kitamura, et al (2000).  In the United States this 

includes the Transportation Analysis and Simulation System, or TRANSIMS
3
: a model, or more 

correctly modeling system, developed over the past decade by Los Alamos National Laboratory 

and its contractors for the U.S. Department of Transportation. The modeling approach and its 

many software modules is downloadable and is extensively documented (Hobeika, 2005).  In 

Europe the Multi-Agent Transport Simulation Toolkit (MATSim)
4
 is a similarly complex, and 

agent-based (see below) micro-simulation modeling system (Balmer et al, 2006) that was also 

developed around an activity-based approach to household travel forecasting.  

 

Microsimulation also lends itself well to the construction of freight movements. In Canada, Hunt 

(2006) described the use of microsimulation to generate daily multi-stop pickup and delivery 

truck tours based on the output from logit regression models which are used to select such 

attributes as the next stop‟s trip purpose, its location and departure time interval.   The approach 

can also be used to build vehicle shipments from the ground up, beginning with the selection of 

the origination point, the size and nature of the cargo to be moved, through the detailed 

scheduling as well as routing of the vehicles used to move it, while also recognizing any physical 

constraints on its transportation (see Xu et al, 2003).  Microsimulation is also proving to be 

useful in the modeling of freight through complete multi-stage product supply chains 

(Boerkamps, et al, 2000 in the Netherlands; Wisetjindawat, et al, 2005 in Japan; in which the 

movement dynamics may play themselves out over many days or even weeks at a time). In 

Massachusetts, Xu et al (2003) use micro-simulation to model the routing of trucks over 

transportation networks as part of a much broader approach to freight modeling that incorporates 

a pseudo-real-time information simulator linked to a complete supply chain decision-making 

simulator (based on a very formal mathematical treatment of the freight movement problem as a 

variational inequality by Nagurney et al (2002). 

 

Some of the most promising opportunities associated with microsimulation in the near future are 

likely to be tied to recent advances in travel data collection, and specifically to vehicle and cargo 

                                                 
3
 http://tmip.fhwa.dot.gov/community/user_groups/transims 

 
4
 http://www.matsim.org 

 

http://tmip.fhwa.dot.gov/community/user_groups/transims
http://www.matsim.org/


12 

 

tacking technologies such as Global Positioning satellites (GPS) and radio frequency 

identification devices (RFIDs). These “IT” based data collection methods are bringing a much 

needed visibility to the step-by-step movements of both people and goods. This includes the 

digital recording and storage of detailed personal travel diaries as well as electronic freight data 

manifests, each creating a new opportunity to establish both the realism and statistical reliability 

of microsimulation-based travel forecasting methods.   

 

A natural adjunct to both ABA and microsimulation modeling entering the travel demand 

literature with increasing frequency is an approach known as agent-based modeling, or ABM. 

Given a set of allowable actions and possible strategies for action, ABM allows a population of 

autonomous agents, such as a group of households or freight shippers or receivers (= agents) to 

interact among themselves to determine how much and what types of travel to engage in, with 

individual agent behaviors based on an agent‟s current status, its objective, and its history of past 

actions. Like microsimulation, ABA supports a bottom-up approach to estimating travel activity 

patterns, and as such seems well suited to travel activity systems in which individual tripmaking 

behaviors can be aggregated, sometimes yielding unexpected system-level emergent behaviors 

(Sanford Bernhardt, 2007). This point gets directly to a key weakness in current trip based an 

aggregate passenger and freight demand models: the difficulty we have in linking our forecasts 

of travel activity to causal mechanisms and hence, by implication, to policy instruments based on 

the expected behavior of passengers, shippers, carriers, receivers, warehousers, and third party 

logistics agents. Rindt, Marca and McNally (2002), and Zhang and Levinson (2004) describe 

early efforts to develop agent-based passenger demand models. Venkat and Wakeland (2006) 

and Hunt and Stefan (2007) describe the use of ABM modeling to simulate commercial freight 

movements.  

 

5. Summary 

The past half century has seen considerable technical as well as conceptual innovation in travel 

model design, calibration and application.  One notable line of advance has been the recognition 

that modeling approaches with very different origins, in economic/utility theory, in system 

optimization, in categorically based statistical analysis, in spatial interaction theory, and in  

agent-based and rule based microsimulation, can all contribute to a better understanding as well 

as better means of estimating the demand for travel. Just how well these and other methods 

contribute to better forecasts remains to be seen, and needs to be supported by a retention of 

historical data sources that will allow modelers to look back, as well as forward, and learn from 

their past efforts. 
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